Innovating A Backyard Solar Battery System

Hackaday Solar Hacks -

Ever on the lookout for creative applications for tech, [Andres Leon] built a solar powered battery system to keep his Christmas lights shining. It worked, but — pushing for innovation — it is now capable of so much more.

The shorthand of this system is two, 100 amp-hour, deep-cycle AGM batteries charged by four, 100 W solar panels mounted on an adjustable angle wood frame. Once back at the drawing board, however, [Leon] wanted to be able track real-time statistics of power collected, stored and discharged, and the ability to control it remotely. So, he introduced a Raspberry Pi running Raspbian Jessie Lite that publishes all the collected data to Home Assistant to be accessed and enable control of the system from the convenience of his smartphone. A pair of Arduino Deuemilanoves reporting to the Pi control a solid state relay powering a 12 V, 800 W DC-to-AC inverter and monitor a linear current sensor — although the latter still needs some tinkering. A in-depth video tour of the system follows after the break!

All the electronics are housed in a climate-controlled box which kicks on when the Pi’s CPU heats up — this is in a Florida backyard, folks — and powered off the battery system, with a handful of 40amp breakers between the components keep things safe. [Leon] has helpfully provided links to all the resources he used, as well as his code on GitHub.

We love homebrew solar power systems, but if only there was some way to take them on the road with us.

Filed under: Arduino Hacks, Raspberry Pi, solar hacks

A Poor-Man’s Laser CNC Engraver

Hackaday Solar Hacks -

What do you get when you mix the disappointment that sometimes accompanies cheap Chinese electronics with the childhood fascination of torturing insects with a magnifying glass on a sunny day? You get a solar-powered CNC etcher, that’s what.

We all remember the days of focussing the sun on a hapless insect, or perhaps less sadistically on a green plastic army man or just a hunk of dry wood. The wonder that accompanied that intense white spot instantly charring the wood and releasing wisps of smoke stayed with you forever, as seemingly did the green spots in your vision. [drum303] remembered those days and used them to assuage his buyer’s remorse when the laser module on his brand new CNC engraver crapped out after the first 10 minutes. A cheap magnifying glass mounted to the laser holder and a sunny day, and he don’t need no stinkin’ lasers! The speed needs to be set to a super slow — 100mm per minute — and there’s the problem of tracking the sun, but the results are far finer than any of our childhood solar-artistic attempts ever were.

Do we have the makings of a possible performance art piece here? A large outdoor gantry with a big Fresnel lens that could etch a design onto a large piece of plywood would be a pretty boss beachside attraction. Of course, you’d need a simple solar tracker to keep things in focus.

Filed under: cnc hacks, solar hacks

Finally, A Calculator For The Atomic Age!

Hackaday Solar Hacks -

In the 1950s, a nuclear-powered future seemed a certainty. The public had not been made aware of the dangers posed by radioactive material, any large-scale accidents involving nuclear reactors had either been hushed up or were yet to happen, and industry and governments were anxious to provide good PR to further their aims. Our parents and grandparents were thus promised a future involving free energy from nuclear reactors in all sorts of everyday situations.

With the benefit of hindsight, we of course know how the story turned out. Winscale, Three Mile Island, Chernobyl, and Fukushima, and we’re still waiting for our atomic automobiles.

If you have a hankering for nuclear-powered domestic appliances though, all is not lost. [GH] is leading the charge towards a future of atomic energy, with a nuclear-powered calculator. It’s not quite what was promised in the ’50s, but it is nevertheless a genuine appliance for the Atomic Age. At its heart is not a 1950s-style fission reactor though, but a tritium tube. Beta particles from the tritium’s decay excite a phosphor coating on the tube’s inside wall, producing a small amount of light. This light is harvested with a solar cell, and the resulting electrical energy is stored in an electrolytic capacitor. The cell has an open-circuit voltage of 1.8 V, and the 100 μF capacitor in question stores a relatively tiny 162 μJ. From this source, a dollar store calculator can operate for about 30 sec, so there should be no hanging about with your mathematics.

We’ve brought you a tritium battery before, albeit a slightly larger one. And should you need the comforting glow of a tritium tube but not the radiation risk, how about this LED-based substitute?

Filed under: solar hacks

Energy Harvesting Wristwatch Uses a Versatile Photodiode

Hackaday Solar Hacks -

There’s some interesting technology bundled into this energy harvesting wristwatch. While energy harvesting timepieces (called automatic watches) have been around for nearly 240 years, [bobricius] has used parts and methods that are more easily transferable to other projects.

Unlike early mechanical systems, this design uses the versatile BPW34 PIN photodiode (PDF warning). PIN photodiodes differ from ordinary PN diodes in that there’s a layer of undoped ‘intrinsic’ silicon separating the P and N doped layers. This reduces the utility of the diode as a rectifier, while allowing for higher quantum efficiency and switching speed.

They are typically used in the telecommunications industry, but have a number of interesting ‘off label’ applications. For example, the BPW34 can be used as a solid-state particle detector (although for detecting alpha particles you’re better off with something in a TO-5 package such as the Hamamatsu S1223-01). The fast response speed means you can send data with lasers or ambient light at high frequencies – a fun use for an LED lighting system or scrap DVD-RW laser.

Some common solar panels are essentially large PIN photodiodes. These are the brownish panels that you’ll find in a solar-powered calculator, or one of those eternally waving golden plastic neko shrines. They specifically offer excellent low-light performance, which is the basis of the energy harvesting used in this project.

What is very interesting is that energy harvesting IoT sensors use a similar method to function without batteries or mains power: amorphous silicon solar cells combined with a high-efficiency supercapacitor charging circuit. This is immensely useful for wireless transmitters on rooftops and industrial or agricultural sites where mains power would be impractical. Also since there’s no need to replace batteries, weatherproofing your sensor is only an epoxy tube away.

Does it function well as a watch though? With a standby time of at least 7 days, a viewing time of maximum 20 minutes, and a USB port for fast charging, it’s not entirely impractical unless you obsessively check the time. As a comparison, automatic mechanical watches offer unlimited viewing time, but typically runs out of stored energy if unworn for a day or two, and we imagine a USB port is a more dignified way of winding a watch than flailing your arms wildly.

See it in action in the video below:

Filed under: clock hacks, solar hacks, wearable hacks
Subscribe to aggregator - Solar